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The author investigates the stability of a certain kind of motion of a 
sYmmetriCa gyroscope on gimbals when the stationary axis of the outer 
gimbal ring is horizontal. This note is a continuation of [l 1. 

1. k the fixed point 0 of a symnetrical gyroscope coincide with the 
origin of a fixed, rectangular, coordinate system 05~ [; the Or is 
horizontal and coincides with the fixed axis of rotation of the outer 
gimbal ring. ‘lhe rectangular coordinate system Oqz moves with the inner 
gimbal ring; the axis Ox coincides with the axis of rotation of the inner 
ring, the axis Oz coincides with the axis of the gyroscope. The directions 
of the axes On and Qy are such that the rectangular coordinate systems 
O[n[ and Oxvz are right-handed. Iet the axes x, .y and z coincide with 
the principal axes of inertia of the inner ring with respect to the 
point 0; let the weight of the wroscope plus the inner ring be P and let 
the center of gravity of the wroscope and the inner ring be on the 
z-axis, its coordinates being (0, 0, to). Iet A = B, C and A,, bl, C, be 
principal moments of inertia of the gyroscope and of the inner ring with 
respect to the fixed point 0 respectively and let A, be the moment of 
inertia of the outer ring with respect to its axis O[. 

As the independent generalized coordinates, which define the orient- 
ation of the mechanical system under consideration in the space 05‘nL5, 
we shall take the Eulerian angles: the angle of nutation 8 (between the 

axes 4 and z 1, the angle of precession $ (between the axes [ and .x) and 
the angle of rotation of the gyroscope itself 4, that is the angle 
through which the gyroscope turned about the axis Oz with respect to the 
inner gimbal ring. Prqjectiops of the instantaneous angular velocity of 

the gyroscope 0, and of the inner ring o 1 , on the moving coordinate 
axes are expressed by the following formulas: 
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p = 0’, 

PI 4’, 

q = q sin 0, r=$+~cosfl 
(1.1) 

ql=lcl)sin 6, rl = g’cose 

‘Ihe vector of the instantaneous angular velocity of the outer ring is 
directed along the 06 axis; its projection on the 05 axis equals 4’. 

We shall use the following expression for the kinetic energy of the 
sys tern (l.l,l) 

T = + {(A + A,) fl” + [(A + B r sins 8 + Cr co9 fJ + A,] +‘a + C (rp’+$’ CDS 0)“} ) 

and the following force function of the gravity forces 

U = -PPz,sin0sin+ (l-1,2) 

Constructing the Lagrange function L = T + V, we obtain the following 
equations of motion for our system: 

(A+A,)8”-(A+B,-CC,)+‘asin0cos8+C(cp’+$’cos0)$’sin8+ 

+ Pz,cosfisin+= 0 

$ {[(A + B,) sins 0 + C, co9 fl + A,] +’ + C (cp’ + q cos 0) cos 0) + 

+ Pz,sin8cos+ = 0 (1@2) 

c-g (cp’+ycose) =o 

Ihe equations of motion (1.2) a&nit the first integrals 

(A + A,) fi12 + [(A + B,) sin2 8 + Ci cos2 0 + A21 $‘a + 
+C(cp’+g’cos0)a+2Pz,sin8sincl,=h 

cp’+qcos6=r=const (1.3) 

the first of which is the energy integral. We shall investigate the 
stability of rotation of the gyroscope about a vertical axis, described 
by the particular solution of the equations (1.2): 

e=; $A, e'=O, +=fz, q=O, r=o (1.4) 

It is imnediately seen that in the (1.4) case, the middle plane of the 

outer ring is horizontal and the middle plane of the inner ring is 
vertical. 

Substituting perturbations 

e=$x+rr, 8’ = vf, (I = + ‘IF + q2, (i = 7fz, r = 0 + E (1.4,1) 

we easily find that the equations of the perturbed motion admit the 
following first integrals: 
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V,=(A+Al)?,‘a+(A+B1+Az)r/21a+C(ia+20E)- 
- Pz, (Q2 + 7g) -t . . . = const 

v, = E = const (1.5) 

‘Ihe first of the above integrals contains the first and the second 
order terms only with respect to the variables n1 and n2. The function: 

v= vi --CwV,= (A +A,)rl,'* + (A+& +Az)rl~'~+ 

+ ci2 -P%(rlla+%2)+*** (1.6) 

is a positive-definite function of its variables only when 

%<O (1.6,1) 

Hence, the above inequality is a sufficient condition for stability of 

motion (1.4) with respect to the variables 8, 8', I&, I)', r * for any 

value of o. It is easily seen that the stability is of a secul,ar kind. 

In the case of an equilibrated gyroscope (z. = 0) the motion (1.4) is 

stable with respect to the variables 8', I/J’, r. 

When t,-, > 0, the degree of instability is even, hence the gyroscopic 

stabilization is possible according to Kelvin's theorem. We shall find 

the condition for the gyroscopic stabilization by utilizing the funda- 

mental Chetaev theorem 12 1 on the existence of a definite quadratic 
integral of the variational equations for a stable unperturbed motion. 

It is easily seen that in the considered case the variational equa- 

tions 

(A + Allqi"+ Car;,'-Ps,rl, = 0 

(A + & + &)rlz"--q'-Pror/z = 0 

admit the integral 12 1 

(1.7) 

I? = 2 [(A + 4) n’ra - (A + 4 4 4 ria’l + Co W + rz2) - 
A,-&-At 

2cw [(A + 8 + 4 ~2’~ - (A + 4 rll” + 

+ Pz, (q12 - qa2)] = const (14 

Let us consider the following function: 

= C20a + (A1S;? - A?1 "' (A + A,) ?I)2 $- 2 (A + A,) Pz,~‘Q + 

l Skimel V.N. Nekotorye Zadachi ob ustoichivosti dvishenia tverdego 

tela. (Certain problem of stability of motion of a rigid body) 

Avtoreferat dissertatsii. Kazan, 1955. 
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+ 
C*o*+(A1-&-d*)PzfJ 

2co 
Pzorgf ; cw + 

+ 
cw + (A* + B1 - Al) Pzo 

2cw (A + & + 4 Q’~ - 2 (A + & + 4 h,wi2’ + 

+ 

cw + (A* + I?, - A 1) J-9” 

zcw 
Pz,Q+... (1.9) 

In the case when t,, > 0, the function V is a positive-definite func- 
tion of its variables if the following single condition is satisfied: 

C2,‘-(2A+Ar+B1+A,+2~(A+A,)(A+B,+.A,))Pz,>0 (1.10) 

The condition (1.10) turns out to be the condition for the myroscopic 
stabilization of the motion (1.4) with respect to the variables 8, +, 
8’, q, r. 

Neglect of masses of the gimbal rings reduces (1.10) to the well- 
known Maievki condition C*& - 4 APz, > 0, which is the necessary and 
sufficient condition for stability of rotation of the Lagrange Ryroscope 
about a vertical axis. It could be proved* that the inequality (1.10) is 
also the necessary condition for the stability of motion (1.4). 

If the wroscopic stabilization does take place, it will be sooner or 
later destroyed by the dissipative forces; that is, the stability of 
motion (1.4) in the case z. > 0 and satisfying the condition (1. lo) is 
temporary. 

In order to prove the above statement, we shall assume that in the 
perturbed motions the dissipative forces which are derivatives of the 
positive-definite Raleigh function are present. 

3 = arll I2 + 2byl’r),’ + cq2’2 

‘lhe approximate equations of the perturbed motion are 

(A + A,) rlr” + Ccq2’ - PzOql = - aI, - by, 

(l.lA) 

(A + 4 + A,) ~2~ - Cql’ - Pzoq2 = - bvjl’ - CQ 

Let us consider the function 

(1.11) 

2~’ = (A + A,) rlr” + (A + B, + -42) 12’~ - Pz, (11~ + qa2) - 

- 4s [(A f A,) ~1’ + (A + % + A,) 712712’1 (1.12) 

and its time derivative, in view of the differential equations (1. ll), 

w’ = - ([a + WA + 41 ‘1i2 + 2h’$ + [c + 2~ (A + B, + A,)] ~‘2 + 
+ 2% (11~ + Ta2) - 2E [cw (‘11%’ - %‘?a) + b (~IQ’ + Q’Q) + 

+.arlh + criz7i2’l~ (1.13) 

l See the preceding footnote. 
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Here c is a positive constant, sufficiently small to make the main 
diaaonal minofs of the discriminant of the quadratic form w' positive. 
lhen, the function 8" will be nqrative-definite, the function W will 
have aninfinitely small upper bound and also could be made negative by 
a suitable choice of numerically small values of nr, ql', r] , q2’, & 
the strength of the Liapunov theorem on instability we cone i) ude that the 
motion (1.4) is unstable with respect to the variables 8, $, 8', IJ', 
when dissipative forces are present. 

We shall consider also the problem of the rotational stability about 
a horizontal axis of a heavy symmetrical gyroscope, as defined by the 
particular solution of the equations (1.2): 

6=0, b'=O, +o, +o, r=o (1.14) 

In this case the middle surfaces of the inner and outer rings are 

vertical and coincide with each other. We shall prove that the motion 
(1.14) is unstable with respect to the variables 8, $, @', $'. The equa- 
tions of the perturbed motion in this case have the form 

(~+0i,"--(~+& --C,V%rlz'*+ c(~+C)Illrlz) + 

+Pz,,(1-+7g+...'o 

b42f GhzR + 2(44 + &-C1)%11'712‘+ (A + J%-Gh2'ci2" + 

+P%?l(l-~a22)--C~+I)rllll'+*~~= 0 (1.15) 

where the rows of dots indicate omitted terms of higher order than three. 
Let us consider the function 

v = (A +A,) rll'rlaf b42+Gbma (1.16) 

whose derivative v'., in view of (1.151, with terms above the second order 
omitted, is 

V’ = - % (Q + ~‘1 + (A t AI + A2 + G) y&o + . . . (1.16,1) 

Let, for example, z0 > 0. In one of the parts of the region Y< 0, 
defined by the simultaneous inequalities 

ril< 0, r/2 > 0, q1'< 0, rla;>O (1.16,2) 

the function v' is a negative-definite function for sufficiently small 
numerical values of the variables. 

It follows that the function V satisfies all conditions of the Chetaev 
theorem on instability, which proves our previous statement that the 
motion defined by (1.14) is unstable. 

2. We shall now consider an interesting case of a gyroscope on gimbals 
with a moment of external forces Lz applied to the axis Oz. In particular, 
we could choose a moment such that the angular velocity of rotation of 
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the gyroscope itself would remain constant; that is q5’ = constant. bt 

us assume that the maaent LZ is a continuous function of the Eulerian 

angles and their time derivatives. 

In the case under consideration, the equations of motion of a 

synvsetrical heavy gyroscope with a horizontal axis of rotation of the 

outer gimbal ring could be reduced to the form 
(2.1) 

(A+A,)~“-(A+B,-CC,)+‘~ sin0cos8+Cr~sin8+Pz0cos8sin~=0 

-$- {[(A + B,) sinz 8 + Ci COS* 8 + A,] +‘} - 08’ sin 0 + Pz,, sin 0 cos t) = 0 

Cd’=L 
dt .z 

Irrespective of the character of the function satisfying the pro- 

perties of Lz the first integral of the equations of motion (2.1) is 

(2.2) 

(A + A,) fl’* + [(A + B,) sin2 t¶ + Ci COE? fJ + AZ] +‘* + 2Pz0 sin 0 sin $= const 

and it is analoeus to the energy integral. 

We shall assume also that the equations (2.1) admit particular solu- 

tions of the kind (1.4) or (1.141, which is obviously possible when 

L = 0. It is easily seen that all the reasoning given in Section 1 con- 

cerning the stability or instability of motions described by the 

particular solutions of (1.41, or (1.14) is valid for the present case. 

Indeed, the equations of the perturbed motion (1.4) have the first 

intearal 

Vi = (A + A,) Q’~ + (A + B1 + A,) q2’a - Pzo (q12 + qs2) + . . . = const (2.3) 

which at z0 < 0 is positive-definite with respect to the variables vI, 

tl2’ 111’1 1/z” showing that at z0 < 0 the unperturbed motion (1.4) is 

stable with respect to the variables 8, 8’, 3, G’. 

As before, the variational equations are of the form (1.7), and admit 

the integral (1.8). Examining the Liapunov function 

v = -$ covi + PZJ (2.3,1) 

we obtain for z,, > 0 the condition (1.10) for the gyroscopic stabiliza- 

tion (first approximation) of the motion (1.4) being destroyed by dis- 

sipative forces. 

Examination of the function (1.16) shows that in this case the motion 
(1.14) is unstable. 
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